Python programming blog

Sunday, June 27, 2021

Car price prediction using Machine learning python



This blog contains the source code for Machine learning project car price prediction using python.


Step 1: Installing libraries

*pip install numpy
*pip install pandas
*pip install sklearn


Step 2: Importing the libraries

import pandas as pd
import numpy as np
from sklearn import linear_model


Step 3: Reading the CSV

df=pd.read_csv('car_data.csv')
df


Step 4: Preprocessing 1:

inputs=df.drop(['Car_Name','Owner','Seller_Type'],axis='columns') 
target=df.Selling_Price
inputs


Step 5: Preprocessing 2

from sklearn.preprocessing import LabelEncoder
Numerics=LabelEncoder()

inputs['Fuel_Type_n']=Numerics.fit_transform(inputs['Fuel_Type'])
inputs['Transmission_n']=Numerics.fit_transform(inputs['Transmission'])
inputs


Step 6: Dropping the string columns

inputs_n=inputs.drop(['Fuel_Type','Transmission','Selling_Price'],axis='columns') 
inputs_n


Step 7: Implemention of Linear regression & Prediction

model=linear_model.LinearRegression()
model.fit(inputs_n,target)
pred=model.predict([[2013,9.54,430000,1,1]])


Fullcode: Github




Thanks for reading this blog..!

 

2 comments: