Python programming blog

Saturday, June 19, 2021

Salary prediction using python

This blog contains the code for salary prediction machine learning project using python.





STEP1:Installing requirements:

*pip install numpy

*pip install pandas

*pip install sklearn


STEP2:Importing modules

import numpy as np

import pandas as pd


STEP3:Reading CSV

data=pd.read_csv('Salary_Data.csv') # Dataset in Github
data


STEP4:Reshaping

x=data.YearsExperience.values.reshape(-1,1)
y=data.Salary.values.reshape(-1,1)

STEP5:Spliting the dataset

from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=0)


STEP6: LinearRegression formula

from sklearn.linear_model import LinearRegression
model=LinearRegression()

STEP7: Applying the formula & prediction

model.fit(x,y)
next_salary=model.predict([[6]])
print(int(next_salary))

STEP8: Accuray

model.score(xtrain,ytrain)


Full code:Github


Thanks for reading the article❤



No comments:

Post a Comment