Step 1: Installing libraries
*pip install numpy
*pip install pandas
*pip install sklearn
Step 2: Importing the libraries
import pandas as pd
import numpy as np
from sklearn import linear_model
Step 3: Reading the CSV
df=pd.read_csv('car_data.csv')
df
Step 4: Preprocessing 1:
inputs=df.drop(['Car_Name','Owner','Seller_Type'],axis='columns')
target=df.Selling_Price
inputs
Step 5: Preprocessing 2
from sklearn.preprocessing import LabelEncoder
Numerics=LabelEncoder()
inputs['Fuel_Type_n']=Numerics.fit_transform(inputs['Fuel_Type'])
inputs['Transmission_n']=Numerics.fit_transform(inputs['Transmission'])
inputs
Step 6: Dropping the string columns
inputs_n=inputs.drop(['Fuel_Type','Transmission','Selling_Price'],axis='columns')
inputs_n
Step 7: Implemention of Linear regression & Prediction
model=linear_model.LinearRegression()
model.fit(inputs_n,target)
pred=model.predict([[2013,9.54,430000,1,1]])
Fullcode: Github